• Victor POPESCU Universitatea Agrară de Stat din Moldova
  • Natalia ȚISLINSCAIA Universitatea Tehnică a Moldovei, Republica Moldova
  • Sergiu Popa Universitatea Agrară de Stat din Moldova, Republica Moldova
  • Vitali VIȘANU Universitatea Tehnică a Moldovei, Republica Moldova
  • Mihail BALAN Universitatea Tehnică a Moldovei, Republica Moldova
  • Mihail MELENCIUC Universitatea Tehnică a Moldovei, Republica Moldova
  • Cristian MALAI Universitatea Agrară de Stat din Moldova, Republica Moldova


Abstract. The paper is dedicated to streamlining the process of fruit dehydration, by microwave treatment in the tunnel, mainly by reducing electricity consumption. To address this issue, an experimental system for fruit dehydration was developed, thus the research being conducted applying a tunnel-type dehydrator. The experiments were performed on the example of apricots, peaches and plums. The results obtained with the application of the experimental system were compared with those obtained based on the classical dehydration technology. Fruit dehydration based on the developed system reduces the consumption of electricity by about 1.37 times, compared to the application of classical technology.

Key words: Dehydration system; Fruit dehydration; Microwave treatment; Tunnel effect; Energy consumption.

Rezumat. Articolul este consacrat eficentizării procesului de deshidratare a fructelor prin tratarea cu microunde în tunel, urmărindu-se în prim plan reducerea consumului de energie electrică. Pentru abordarea acestei probleme a fost elaborat un sistem experimental pentru deshidratarea fuctelor care aplică un deshidrator de tip tunel, în baza căruia au fost realizate cercetările. Experimentele au fost realizate pe exemplul caiselor, piersicilor și prunelor. Cercetările au demonstrat că deshidratarea fructelor în baza noului sistem propus, permite reducerea consumului de energie electrică de circa 1,37 ori în comparație cu tehnologia clasică.

Cuvinte-cheie: Sistem de deshidratare; Deshidratarea fructelor; Tratare cu microunde; Efect tunel; Consum de energie.


1. CASTRICA, M., GIROMINI, C., REBUCCI, R., TRETOLA, M. (2019). Total phenolic content and antioxidant capacity of agri-food waste and by-products. In: Italian Journal of Animal Science, vol. 18, nr. 1, pp. 336-341. Available: DOI:10.1080/1828051X.2018.1529544
2. CHOU, S., CHUA, K. (2021). New hybrid drying technologies for heat sensitive foodstuffs. In: Trends in Food Science & Technology, vol. 12(10), pp. 359-369. Available:
3. ESPOSITO, B., Sessa, M. R., Sica, D., Malandrino, O. (2020). Towards Circular Economy in the Agri-Food Sector. A Systematic Literature Review. In: Sustainability, vol. 12, nr. 18, pp. 95-107. Available:
4. FIGIEL, A. (2010). Drying kinetics and quality of beetroots dehydrated by combination of convective and vacuum-microwave methods. In: Journal of Food Engineering, vol. 98(4), pp. 461–470. ISSN 0260-8774.
5. HORABIK, J., MOLENDA, M. (2016). Parameters and contact models for DEM simulations of agricultural granular materials: A review. In: Biosystems Engineering, vol. 147, pp. 206–225. Available: DOI: 10.1016/j.biosystemseng.2016.02.017.
6. JAJCEVIC, D., RADEKE, C., SIEGMANN, E., KHINAST, J. G. (2013). Large-scale CFD–DEM simulations of fluidized granular systems. In: Chemical Engineering Science, vol. 98, pp. 298–310. ISSN 0009-2509.
7. KELLEY, K. M., PRIMROSE, R., CRASSWELLER, R., HAYES, J. E., MARINI, R. (2015). Consumer Peach Preferences and Purchasing Behavior: a mixed methods study. In: Journal of the Science of Food and Agriculture, vol. 96 (7), pp. 2451-2461. Available:
8. NOWICKA, P., WOJDYŁO, A., LECH, K., FIGIEL, A. (2015). Chemical Composition, Antioxidant Capacity, and Sensory Quality of Dried Sour Cherry Fruits pre-Dehydrated in Fruit Concentrates. In: Food and Bioprocess Technology, vol. 10, nr. 8, pp. 2076-2095. ISSN 1935-5149.
9. NEDEFF, V. et al. (2008). Researches concerning the Aerodynamic Sorting of Solid Particles According to the Surface States. In: Revista de Chimie, vol. 59(3), pp. 360–365. Disponibil:
10.PANZELLA, L. et al. (2020). Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. In: Frontiers in Nutrition, vol. 7, pp. 60-68. Available: DOI: 10.3389/fnut.2020.00060
11.PAGOTTO, M., HALOG, A. (2016). Towards a Circular Economy in Australian Agri-food Industry: An Application of Input-Output Oriented Approaches for Analyzing Resource Efficiency and Competitiveness Potential. In: Journal of Industrial Ecology, vol. 20, nr. 5, pp. 1176–1186. Available: DOI: 10.1111/jiec.12373.
12.SHARMA, Y., MANGLA, S., PATIL, P., Liu, S. (2019). When challenges impede the process: For circular economy-driven sustainability practices in food supply chain. In: Management Decision, vol. 57, nr. 4, pp. 995–1017. ISSN 0025-1747.
13.ZHU, H.P., ZHOU, Z.Y., YANG, R.Y., YU, A.B. (2007). Discrete particle simulation of particulate systems: Theoretical developments. In: Chemical Engineering Science, vol. 62 (13), pp. 3378-3396. Available:
How to Cite
POPESCU, Victor et al. SISTEM PENTRU DESHIDRATAREA FRUCTELOR CU EFICIENȚĂ ENERGETICĂ ÎNALTĂ. Stiinta agricola, [S.l.], n. 1, p. 97-102, aug. 2022. ISSN 2587-3202. Available at: <>. Date accessed: 24 may 2024.
Table of contents