THE MORE WINE, THE MORE GAS? ESTIMATION OF THE BIOENERGY POTENTIAL OF WINERY WASTEWATER IN MOLDOVA: CONTRIBUTIONS TO SUSTAINABLE DEVELOPMENT

  • Charles Amarachi OGBU Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
  • Marek JELÍNEK Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
  • Tatiana ALEXIOU-IVANOVA Department of Sustainable Technologies, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Czech Republic
  • Iulia CORMAN Department of Management of Natural Resources, Faculty of Cadastre and Law, State Agrarian University of Moldova, Republic of Moldova

Abstract

Abstract. Wine is one of the most ancient commodities in the world. The critical residues from the wine industry are grape leaves, stems, grape pomace, grape seeds, yeast lees, tartrate, and wastewater. The indiscriminate disposal of produced wastewater has adverse environmental and health consequences. Nevertheless, winery effluent has substantial prospects as an energy source. Hence, this paper aims to briefly showcase the potential of energy generation from wastewater in the wine industry through anaerobic digestion. From literature and statistical records, in 2018, the cultivation of grapes in Moldova covered about 126,873 ha of land and produced 730,171 t of grapes, with over 24% pressed for wine production. Consequently, the industry released over 6 billion litres of wastewater. Therefore, by anaerobic digestion of this effluent, there is a potential for the wine industry to produce 459,166 MWh of electricity annually to satisfy nearly 287,000 people. This potential represents a very important step towards energy self-sufficiency of the wine industry and a contribution to the sustainable development goals concerning wastewater, energy and sanitation.


Key words: Biofuel; Biogas; Cleaner production; Sustainable development; Waste valorisation.


Реферат. Вино является одним из древнейших товаров потребления в мире. Важнейшими остаточными продуктами винодельческой промышленности являются виноградные листья, гребни виноградной грозди, виноградные выжимки, виноградные косточки, дрожжевой осадок, тартраты и сточные воды. Неизбирательная утилизация образующихся сточных вод приводит к неблагоприятным последствиям для окружающей среды и здоровья. Однако сточные воды виноделия имеют существенные перспективы в качестве источника энергии. Поэтому, данное исследование направлено на то, чтобы вкратце продемонстрировать потенциал производства энергии из сточных вод в винодельческой промышленности посредством процесса метанового брожения. Согласно данным из литературы и статистическим данным, в 2018 году выращивание винограда в Молдове занимало около 126 873 га земли и было собрано 730 171 тонн винограда, более 24% которого было использовано для производства вина. Следовательно, в результате деятельности винодельческой промышленности образовалось более 6 миллиардов литров сточных вод. Таким образом, при помощи метанового брожения сточных вод винодельческая промышленность может производить 459 166 МВт/ч электроэнергии ежегодно, чтобы удовлетворить потребности в энергии почти 287 000 человек. Это демонстрирует шаг к достижению энергетической самообеспеченности винодельческой промышленности и вклад в достижение целей устойчивого развития, направленных на проблемы сточных вод, энергии и санитарии.


Key words: Биотопливо; Биогаз; Чистое производство; Устойчивое развитие; Валоризация отходов.

References

1. ACROEX WINE HOLDING (AWH): [online], © 1995 - 2005 AWH. 2005. Available: http://albastrele.md/en/start [Accessed 17/08/2021]
2. AMOR, C., RODRÍGUEZ-CHUECA, J., FERNANDES, J. L., DOMÍNGUEZ, J. R., LUCAS, M. S., & PERES, J. A. (2019). Winery wastewater treatment by sulphate radical based-advanced oxidation processes (SR-AOP): Thermally vs UV-assisted persulphate activation. In: Process Safety and Environmental Protection,
vol. 122, pp. 94-101. ISSN 0957-5820. Available: https://doi.org/10.1016/j.psep.2018.11.016
3. BOLZONELLA, D., PAPA, M., DA ROS, C., ANGA MUTHUKUMAR, L., & ROSSO, D. (2019). Winery wastewater treatment: a critical overview of advanced biological processes. In: Critical Reviews in Biotechnology, vol. 39(4), pp. 489–507. Available: https://doi.org/10.1080/07388551.2019.1573799
4. BOSTAVAN. 2019. Available: http://bostavan.md/en/winery/ [Accessed 17/08/2021]
5. BUITRÓN, G., MARTÍNEZ-VALDEZ, F. J., & OJEDA, F. (2019). Biogas Production from a Highly Organic Loaded Winery Effluent Through a Two-Stage Process. In: Bioenergy Research, vol. 12(3), pp. 714–721. ISSN 1939-1234. Available: https://doi.org/10.1007/s12155-019-09984-7
6. CAÑADAS, R., GONZÁLEZ-MIQUEL, M., GONZÁLEZ, E.J., DÍAZ, I., & RODRÍGUEZ, M. (2021). Hydrophobic eutectic solvents for extraction of natural phenolic antioxidants from winery wastewater. In: Separation and Purification Technology, vol. 254, pp. 117-590. ISSN 1383-5866. Available: https://doi.org/10.1016/j.
seppur.2020.117590
7. CHÂTEAU VARTELY. 2017. Winery: Our Mission. Available: https://www.vartely.md/vinaria [Accessed 17/08/2021]
8. CHERNIWCHAN, J. (2012). Economic growth, industrialization, and the environment. In: Resource and Energy Economics, vol. 34 (4), pp. 442-467. ISSN 0928-7655. Available: https://doi.org/10.1016/j.reseneeco.2012.04.004
9. CIOBANU, M. (2015). Foreign direct investments and processing industry competitiveness in the Republic of Moldova. In: Meridian Ingineresc, nr. 4, pp. 50-57. ISSN 1683-853X. Available: http://repository.utm.md/bitstream/handle/5014/2428/MI_2015_4_pg_50_57.pdf?sequence=1&isAllowed=y
10. DUCA, G., & MEREUŢA, A. (2017). Solid Waste Management in the Republic of Moldova. In: Proceedings of the Eleventh International Conference on Management Science and Engineering Management. Lecture Notes on Multidisciplinary Industrial Engineering, pp. 1283-1295. Available: https://doi.org/10.1007/978-3-319-59280-0_107
11. FAO (2021). Crops. Available: http://www.fao.org/faostat/en/#data/QCL [Accessed 10/08/2021]
12. FLORES, L., GARCÍA, J., PENA, R., & GARFÍ, M. (2019). Constructed wetlands for winery wastewater treatment: A comparative Life Cycle Assessment. In: Science of The Total Environment, vol. 659, pp. 1567-1576. Available: https://doi.org/10.1016/J.SCITOTENV.2018.12.348
13. GASPAR, M.C., MENDES, C.V.T., PINELA, S.R., MOREIRA, R., CARVALHO, M.G.V.S., QUINA, M. J., BRAGA, M. E. M., & PORTUGAL, A.T. (2019). Assessment of Agroforestry Residues: Their Potential within the Biorefinery Context. In: ACS Sustainable Chemistry and Engineering, nr. 7(20), pp. 17154–17165. Available: https://doi.org/10.1021/acssuschemeng.9b03532
14. INTERNATIONAL ENERGY AGENCY (IEA) 2021. IEA Atlas of Energy. Available: http://energyatlas.iea.org/#!/profile/WORLD/MDA [Accessed 12/08/2021]
15. INTERNATIONAL ORGANISATION OF VINE AND WINE (OIV) (2021). State of the World Vitivinicultural Sector in 2020. 19 p. Available: https://www.oiv.int/public/medias/7909/oiv-state-of-the-world-vitivinicultural-sector-in-2020.pdf
16. INTERNATIONAL TRADE ADMINISTRATION (ITA). (2021). Moldova Country Commercial Guide- Moldova – Energy. Available: https://www.trade.gov/country-commercial-guides/moldova-energy
17. IOANNOU, L. A. (2013). Advanced systems for the enhancement of the environmental performance of wineries-wastewater purification combining biological, advanced chemical and reverse osmosis treatment: Doctoral dissertation, 511 p. Available: https://gnosis.library.ucy.ac.cy/bitstream/handle/7/39019/Lida%20Ioannou%20PhD.pdf?sequence=4&isAllowed=y
18.JOHANSSON, M. (2012). Potential for Biogas at Wineries in Moldova- A case study-based techno-economic analysis. Master’s Thesis within the Sustainable Energy Systems programme, Chalmers University of Technology, Goteborg, Sweden. 63 p. Available: https://publications.lib.chalmers.se/records/fulltext/155049.pdf
19. LION-GRI. 2021. Available: https://www.lion-gri.com/about [Accessed 17/08/2021]
20. LUZ, S., RIVAS, J., AFONSO, A., & CARVALHO, F. (2021). Immediate one-step lime precipitation process for the valorisation of winery wastewater to agricultural purposes. In: Environmental Science and Pollution Research, vol. 28, pp. 18382–18391. Available: https://doi.org/10.1007/s11356-020-11933-3
21. MEEGODA, J.N., LI, B., PATEL, K., WANG, L.B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. In: International journal of environmental research and public health, vol. 15(10), p. 2224. ISSN 1660-4601.
22. MOLETTA, R. (2005). Winery and distillery wastewater treatment by anaerobic digestion. In: Water Science & Technology, vol. 51(1), pp. 137-144. Available: https://iwaponline.com/wst/article-abstract/51/1/137/11213/Winery-and-distillery-wastewater-treatment-by?redirectedFrom=PDF
23. MOSSE, K.P.M., PATTI, A.F., CHRISTEN, E.W., CAVAGNARO, T. R. (2011). Review: Winery wastewater quality and treatment options in Australia. In: Australian Journal of Grape and Wine Research, vol. 17(2), pp. 111-122. Available: https://onlinelibrary.wiley.com/doi/10.1111/j.1755-0238.2011.00132.x
24. NIKOLAIDOU, E., IOSSIFIDOU, M., TATAKI, V., EFTAXIAS, A., AIVASIDIS, A., DIAMANTIS, V. (2016). Energy Recovery and Treatment of Winery Wastes by a Compact Anaerobic Digester. In: Waste and Biomass Valorisation, vol. 7(4), pp. 799–805. Available: https://doi.org/10.1007/s12649-016-9541-1
25. PACHÓN, E.R., MANDADE, P., GNANSOUNOU, E. (2020). Conversion of vine shoots into bioethanol and chemicals: Prospective LCA of biorefinery concept. In: Bioresource Technology, vol. 303. ISSN 1873-2976. Available: https://doi.org/10.1016/J.BIORTECH.2020.122946
26. UNITED Nations. (2015). Transforming our world: The 2030 agenda for sustainable development. 41 p. Available: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf
Published
2022-08-18
How to Cite
OGBU, Charles Amarachi et al. THE MORE WINE, THE MORE GAS? ESTIMATION OF THE BIOENERGY POTENTIAL OF WINERY WASTEWATER IN MOLDOVA: CONTRIBUTIONS TO SUSTAINABLE DEVELOPMENT. Stiinta agricola, [S.l.], n. 1, p. 85-91, aug. 2022. ISSN 2587-3202. Available at: <https://sa.uasm.md/index.php?journal=sa&page=article&op=view&path%5B%5D=780>. Date accessed: 11 dec. 2024.
Section
Table of contents

Most read articles by the same author(s)