REACŢIA FORMELOR PARENTALE ŞI HIBRIZILOR F2 DE TOMATE LA TEMPERATURI STRESANTE
Abstract
Abstract. The paper presents data on the response of F2 hybrid combinations and parental forms of tomato at different temperatures (optimal 250 C and stressful 400 , 420 C), tested in laboratory conditions. It was established that stressful temperatures significantly affect the early ontogenesis of tomato varieties and hybrids by suppressing the growth of the embryonic root, stem and seedling (sometimes by stimulating them). Cluster analysis by the k-media method demonstrated that stressful temperatures manifested a higher discriminating ability of tomato clusters for seedling length and embryonic root length characters, which reveals a more pronounced specificity of interaction at these temperatures. Florina, Wake, Prestij and Rome varieties and F2 hybrid combinations Mary Gratefullt x Pontina, Prestij x Pontina, Rome x Wake have the highest complex resistance in terms of the reaction of the embryonic root, stem and seedling at 420 C temperature. They are of interest in the further process of breeding.
Key words: Lycopersicon esculentum; Temperature; Heat resistance; Evaluation; Embryonic root; Embryonic stem; Seedling; Length; Variability.
Rezumat. În lucrare sunt prezentate date cu privire la reacția combinațiilor hibride F2 și a formelor parentale de tomate la diferite niveluri de temperatură (optimală – 250 C și stresante – 400 , 420 C), testate în condiții de laborator. S-a stabilit că temperaturile stresante influențează semnificativ ontogeneza timpurie a soiurilor și hibrizilor de tomate prin reprimarea creșterii rădăciniței, tulpiniței și plantulei (uneori prin stimularea acestora). Analiza clusteriană prin metoda k-mediilor a demonstrat că temperaturile stresante au manifestat o capacitate discriminantă mai înaltă a clusterelor de tomate pentru caracterele lungimea plantulei și lungimea rădăciniței, ceea ce relevă specificitatea de interacțiune mai pronunțată cu aceste temperaturi. Soiurile Florina, Deșteptarea, Prestij, Roma și combinațiile hibride F2 Mary Gratefully x Pontina, Prestij x Pontina, Roma x Deșteptarea au înregistrat cea mai înaltă rezistență complexă în ceea ce privește reacția rădăciniţei, tulpiniţei și plantulei la temperatura de 420 C, astfel acestea prezintă interes în procesul de ameliorarea de mai departe.
Cuvinte-cheie: Lycopersicon esculentum; Temperatură; Rezistenţă la căldură; Evaluare; Rădăciniţă; Tulpiniţă; Plantulă; Lungime; Variabilitate.
References
2. BATTISTI, D.S., NAYLOR, R.L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. In: Science, vol. 323, no. 5911, pp. 403–406. DOI: 10.1126/science.1164363.
3. BITA, C.E., GERATS, T. (2013). Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. In: Frontiers in plant science, vol. 4, pp.1-18. DOI:10.3389/fpls.2013.00273.
4. CAMEJO, D. et al. (2005). High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. In: Journal of Plant Physiology, vol. 162(3), pp. 281-289.
5. CARVALHO, R.F., TAKAKI, M., AZEVEDO, R.A. (2011). Plant pigments: the many faces of light perception. In: Acta Physiologiae Plantarum, vol. 33(2), pp. 241–248.
6. FERNANDES, A.A., MARTINEZ, H.E.P., FONTES, P.C.R. (2002). Produtividade, qualidade dos frutos e estado nutricional do tomateiro tipo longa vida conduzido com um cacho, em cultivo hidropônico, em função das fontes de nutrientes. In: Horticultura Brasileira, vol. 20, nr. 4, pp. 564-570.
7. FIRON, N., SHAKED, R., PEET, M.M., PHARR, D.M., ZAMSKI, E., ROSENFELD, K., ALTHAN, L., PRESSMAN, E. (2006). Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. In: Scientia Horticulturae, vol.109(3), pp. 212–217. DOI:10.1016/j.scienta.2006.03.007.
8. FRAGA, H., MALHEIRO, A.C., MOUTINHO-PEREIRA, J., SANTOS, J.A. (2012). An over view of climate change impacts on European viticulture. In: Food and Energy Security, vol. 1(2), pp. 94–110.
9. IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment: Report of the Intergovernamental Panel on Climate Change. IPCC, Geneva, Switzerland, 151 p.
10. LI, Y., WANG, H., ZHANG, Y., MARTIN, C. (2018). Can the world’s favorite fruit, tomato, provide an effective biosynthetic chassis for high-value metabolites? In: Plant Cell Reports, vol. 37(10), pp. 1443–1450.
11. MARTÍ, R., ROSELLÓ, S., CEBOLLA-CORNEJO, J. (2016). Tomato as a source of carotenoids and polyphenols targeted to cancer prevention. In: Cancers, vol. 8(6), pp.1-28. DOI: 10.3390/cancers8060058.
12. MIHNEA, N. (2017). Potenţialul biologic al genofondului Solanum Lycopersicum L. şi valorificarea acestuia în ameliorarea caracterelor preţioase: Autoreferatul tezei de doctor habilitat în ştiințe biologice. Chişinău, 44 p.
13. MIHNEA, N., BOTNARI, V., LUPAŞCU, G. (2016). Tomato Varieties with High Indices of Productivity and Resistance to Environmental Factors. In: Ekin Journal of Crop Breeding and Genetics, vol. 2(1), pp.15-22.
14. NAHAR, K., ULLAH, S.M. (2011). Effect of water stress on moisture content distribution in soil and morphological characters of two tomato (Lycopersicon esculentum Mill) cultivars. In: Journal of Scientific Research, vol. 3(3), pp. 677–682.
15. NASIR, M. U. et al. (2015). Tomato processing, lycopene and health benefits: a review. In: Science Letters, vol. 3, nr. 1, pp. 1-5.
16. PEET, M.M., WILLITS, D.H., GARDNER, R. (1997). Response of ovule development and post-pollen production processes in male-sterile tomatoes to chronic, sub-acute high temperature stress. In: Journal of Experimental Botany (United Kingdom), vol. 48, pp. 101–111.
17. PORTER, J.R., XIE, L., CHALLINOR, A.J., COCHRANE, K., HOWDEN, S.M., IQBAL, M.M., LOBELL, D.B., TRAVASSO, M.I. (2014). Food Security and Food Production Systems. In: Climate Change 2014 – Impacts, Adaptation and Vulnerability, Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report, pp. 485-534. DOI:10.1017/CBO9781107415379.012.
18. RIBEIRO, R.V., SANTOS, M.G., MACHADO, E.C., OLIVEIRA, R.F. (2008). Photochemical heat-shock response in common bean leaves as affected by previous water deficit. In: Russian Journal of Plant Physiology, vol. 55(3), pp. 350–358. DOI:10.1134/S1021443708030102.
19. SATO, S., PEET, M.M., THOMAS, J.F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. In: Plant, Cell & Environment, vol. 23, pp. 719–726.
20. SAVARY, S., MADDEN, L.V., ZADOKS, J.C., KLEIN-GEBBINCK, H.W. (2010). Use of Categorical Information and Correspondence Analysis in Plant Disease Epidemiology. In: Advances in Botanical Research, vol. 54, pp. 190-198.
21. TIEMAN, D., ZHU, G., RESENDE, M. F. R. et al. (2017). A chemical genetic roadmap to improved tomato flavor. In: Science, vol. 355, no. 6323, pp. 391–394. DOI: 10.1126/science.aal1556.
22. ИВАКИН, А.П. (1979). Meтодические указания. Определение жаростойкости овощных культур по ростовой реакции проростков после прогревания их при высокой температуре. Ленинград: ВИР, г. Павловск, 9 с.
This work is licensed under a Creative Commons Attribution 4.0 International License.