Application of FT-NIR spectroscopy for evaluation of feeds digestibility by analysis of feces chemical composition

  • Semyon BIBIKOV Research and Testing Centre «Cherkizovo» Ltd., Moscow, Russian Federation
  • Sergii SHAPOVALOV Research and Testing Centre «Cherkizovo» Ltd., Moscow, Russian Federation
  • Elena KORNILOVA Research and Testing Centre «Cherkizovo» Ltd., Moscow, Russian Federation


In this study, we demonstrated the possibility of rapid and non-destructive quantification of crude protein, fat, fiber and moisture content in pigs’ feces by Fourier transform near-infrared (FT-NIR) spectroscopy. The predictions of developed partial least-squares (PLS) regression calibration models do not exceed the error of used arbitrary method. The FT-NIR models demonstrate satisfactory correlation coefficients (R2 >0.81) and residual predictive deviation (RPD) values from 2.3 to 7.5, depending on measured parameter. Obtained results indicate the possibility of use FT-NIR spectroscopy as a simple tool for monitoring feed’s digestibility and allowing applying timely corrections to diets.

Key words: Pigs; Feces; Feed digestibility; Infrared spectroscopy.


1. ALTHAUS, B., PAPKE, G., SUNDRUM, A. (2013). Use of near infrared reflectance spectroscopy to assess nitrogen and carbon fractions in dairy cow feces. In: Animal Feed Science and Technology, vol. 185(1-2), pp. 53-59.
2. ASTM E 1655-05-2005 Standard Practices for Infrared Multivariate Quantitative Analysis.
3. BLAIR, R. (2017). Nutrition and feeding of organic pigs. Canada: University of British Columbia. 272 p.
4. BOURGON, S. L., DE AMORIM, M. D., CHENIER, T., SARGOLZAEI, M., MILLER, S. P., MARTELL, J. E., MONTANHOLI, Y. R. (2018). Relationships of nutritional plane and feed efficiency with sexual development and fertility related measures in young beef bulls. In: Animal reproduction science, vol. 198, pp. 99-111.
5. DANEZIS, G. P., TSAGKARIS, A. S., CAMIN, F., BRUSIC, V., GEORGIOU, C. A. (2016). Food authentication: Techniques, trends & emerging approaches. In: TrAC Trends in Analytical Chemistry, vol. 85, pp. 123-132.
6. FREDIN, S. M., FERRARETTO, L. F., AKINS, M. S., HOFFMAN, P. C., & SHAVER, R. D. (2014). Fecal starch as an indicator of total-tract starch digestibility by lactating dairy cows. In: Journal of dairy science, vol. 97(3), pp. 1862–1871.
7. HAN, S. W., CHEE, K. M., CHO, S. J. (2015). Nutritional quality of rice bran protein in comparison to animal and vegetable protein. In: Food chemistry, vol. 172, pp. 766-769.
8. HELL, J., PRÜCKLER, M., DANNER, L., HENNIGES, U., APPRICH, S., ROSENAU, T., KNEIFEL, W., & BÖHMDORFER, S. (2016). A comparison between near-infrared (NIR) and mid-infrared (ATR-FTIR) spectroscopy for the multivariate determination of compositional properties in wheat bran samples. In: Food Control, vol. 60, pp. 365-369.
9. INGLE, P. D., CHRISTIAN, R., PUROHIT, P., ZARRAGA, V., HANDLEY, E., FREEL, K., & ABDO, S. (2016). Determination of Protein Content by NIR Spectroscopy in Protein Powder Mix Products. In: Journal of AOAC International, vol. 99(2), pp. 360–363.
10.JANCEWICZ, L.J., SWIFT, M.L., PENNER, G.B., BEAUCHEMIN, K.A., KOENIG, K. M., CHIBISA, G.E., HE, M.L., MCKINNON, J.J., YANG, W.-Z., MCALLISTER, T.A. (2016). Development of near-infrared spectroscopy calibrations to estimate fecal composition and nutrient digestibility in beef cattle. In: Canadian Journal of Animal Science, vol. 97(1), pp. 51-64.
11. PIERRE-OLIVIER, J., BRADLEY, R. L., TREMBLAY, J. P., & CÔTÉ, S. D. (2015). Combining near infrared spectra of feces and geostatistics to generate forage nutritional quality maps across landscapes. In: Ecological applications: a publication of the Ecological Society of America, vol. 25(6), pp. 1630–1639.
12.JOHNSON, J. R., CARSTENS, G. E., PRINCE, S. D., OMINSKI, K. H., WITTENBERG, K. M., UNDI, M., FORBES, T. D., HAFLA, A. N., TOLLESON, D. R., & BASARAB, J. A. (2017). Application of fecal near-infrared reflectance spectroscopy profiling for the prediction of diet nutritional characteristics and voluntary intake in beef cattle. In: Journal of animal science, vol. 95(1), pp. 447–454.
13. LEITE, E. R., STUTH J. W. (1994). Influence of duration of exposure to field conditions on viability of fecal samples for NIRS analysis. In: Rangeland Ecology & Management/Journal of Range Management Archives, vol. 47(4), pp. 312-314.
14. LYONS, R. K., STUTH, J. W. (1992). Fecal NIRS equations for predicting diet quality of free-ranging cattle. In: Journal of Range Management, vol. 45(3), pp. 238-244.
15. NIREA, K. G., PÉREZ DE NANCLARES, M., SKUGOR, A., AFSETH, N. K., MEUWISSEN, T., HANSEN, J. Ø., MYDLAND, L. T., & ØVERLAND, M. (2018). Assessment of fecal near-infrared spectroscopy to predict feces chemical composition and apparent total-tract digestibility of nutrients in pigs. In: Journal of animal science, vol. 96(7), pp. 2826–2837.
16. SHURSON, G. C., KERR, B. J., HANSON, A. R. (2015). Evaluating the quality of feed fats and oils and their effects on pig growth performance. In: Journal of animal science and biotechnology, vol. 6(1), p. 10.
17. STUTH, J., JAMA, A., TOLLESON, D. (2003). Direct and indirect means of predicting forage quality through near infrared reflectance spectroscopy. In: Field Crops Research, vol. 84(1-2), pp. 45-56.
18. TOLLESON, D. R., SCHAFER, D. W. (2014). Application of fecal near-infrared spectroscopy and nutritional balance software to monitor diet quality and body condition in beef cows grazing Arizona rangeland. In: Journal of animal science, vol. 92 (1), pp. 349-358.
19. WOLD, S., MARTENS, H., WOLD, H. (1983). The multivariate calibration problem in chemistry solved by the PLS method. In: Matrix pencils. Springer, Berlin, Heidelberg, С. 286-293.
How to Cite
BIBIKOV, Semyon; SHAPOVALOV, Sergii; KORNILOVA, Elena. Application of FT-NIR spectroscopy for evaluation of feeds digestibility by analysis of feces chemical composition. Stiinta agricola, [S.l.], n. 2, p. 149-153, mar. 2021. ISSN 2587-3202. Available at: <>. Date accessed: 13 june 2021.
Table of contents