Grain quality of tetraploid wheat Triticum durum desf. var. falcatomelanopus jakubz. & filat

  • Liana RELINA Plant Production Institute nd. a. V. Ya. Yuriev of National Academy of Agrarian Sciences of Ukraine
  • Liudmyla Vecherska Plant Production Institute nd. a. V. Ya. Yuriev of NAAS
  • Roman BOHUSLAVSKYI Plant Production Institute nd. a. V. Ya. Yuriev of National Academy of Agrarian Sciences of Ukraine
  • Oleg GOLIK Plant Production Institute nd. a. V. Ya. Yuriev of National Academy of Agrarian Sciences of Ukraine

Abstract

Abstract. Triticum durum var. falcatomelanopus is tetraploid wheat with some valuable traits, though it is scarcely described in literature. Given that this convariety can be promising material for breeding, our objective was to evaluate the quality, performance and processing parameters of its grain. Grain harvested in 2015, 2016 and 2017 was analyzed. The protein content was determined by Kjeldahl digestion. The carotenoid level was spectrophotometrically assessed in acetone extracts. The antiradical activity was investigated by DPPH• assay in ethanol extracts. The contents of trace minerals were determined by atomic absorption spectrometry. The parameters under investigation were divergently affected by weather conditions. Our results have demonstrated that T. durum var. falcatomelanopus is a source of large seeds; it can be used in wheat breeding as a source of high iron and sufficient zinc contents, balanced copper content, high vitreousness and grain hardness; it cannot be referred to high-carotenoid or high-antioxidant, or high-protein species.

References

1. ABDEL-AAL, S.M., RABALSKI, I. (2012). AACCI approved methods technical committee report: a new AACCI approved method for the determination of the total carotenoid content of cereal whole grain and refined flours. In: Cereal Foods World, vol. 57(6), pp. 289-294. DOI 10.1094/CFW-57-6-0289.
2. ABDIPOUR, M. et al. (2016). Association between Grain Size and Shape and Quality Traits, and Path Analysis of Thousand Grain Weight in Iranian Bread Wheat Landraces from Different Geographic Regions. In: Notulae Botanicae Horti Agrobotanici, vol. 44(1), pp. 228-236. DOI 10.15835/nbha44110256.
3. BAILEY, R.L., WEST jr., K.P., BLACK, R.E. (2015). The Epidemiology of Global Micronutrient Deficiencies. In: Annales of Nutrition and Metabolism, vol. 66 (suppl. 2), pp. 22-33. DOI 10.1159/000371618.
4. BOUIS, H.E., SALTZMAN, A. (2017). Improving nutrition through biofortification: A review of evidence from Harvest Plus, 2003 through 2016. In: Global Food Security, vol. 12, pp. 49-58. DOI 10.1016/j.gfs.2017.01.009.
5. CAKMAK, I. et al. (2004). Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. In: Soil Science and Plant Nutrition, vol. 50(7), pp. 1047-1054. DOI
10.1080/00380768.2004.10408573.
6. CHATZAV, M. et al. (2010). Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. In: Annals of Botany, vol. 105 (7), pp. 1211-1220. DOI 10.1093/aob/mcq024.
7. DESHPANDE, J.D., JOSHI, M.M., GIRI, P.A. (2013). Zinc: The trace element of major importance in human nutrition and health. In: International Journal of Medical Science and Public Health, vol. 2(1), pp. 1-6. DOI
10.5455/ijmsph.2013.2.1-6.
8. DISTELFELD, A. et al. (2007). Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. In: Physiologia Plantarum, vol. 129, pp. 635-643. DOI 10.1111/j.1399-3054.2006.00841.x.
9. DLOUHY, A.C., OUTTEN, C.E. (2013). Iron Uptake, Trafficking and Storage: Chapter 8.4. In: BANCI, Lucia, ed. Metallomics and the Cell. Metal Ions in Life Sciences. 12. Springer. DOI 10.1007/978-94-007-5561-1_8.
ISBN 978-94-007-5560-4.
10. DOROFEEV, V.F. (1987). Wheat varieties of the world. Leningrad: Agropromizdat. 413 p. (in Russian).
11. DSTU 3768:2010. Wheat: Technical specifications. Valid from 01. 04.2010 (in Ukrainian).
12. FAOSTAT 2013. Available: http:// www.fao.org/faostat/en/#home.
13. FEDOTOV, V.A. (2011). Factors of formation of consumer properties of grain/flour products. In: Vestnik OGU, vol. 4(123), pp. 186-190. Available: https://cyberleninka.ru/article/v/faktory-formirovaniya-potrebitelskih-
svoystv-zernomuchnyh-tovarov (in Russian).
14. FESCHENKO, V.P. (2014). The ecological state of cereals in the Novosibirsk region by contents of heavy metals. In: Sovremennye Problemy Nauki i Obrazovaniya, nr. 5. Available: www.science-education.Ru/ru/article/
view?id=15088 (in Russian).
15. GARCIA-OLIVEIRA, A.L. et al. (2018). Genetic basis and breeding perspectives of grain iron and zinc enrichment in cereals. In: Frontiers in Plant Science, vol. 9, p. 937. DOI 10.3389/fpls.2018.00937.
16. GERA, T. et al. (2012). Effect of iron-fortified foods on hematologic and biological outcomes: Systematic review of randomized controlled trials. In: American Journal of Clinical Nutrition, vol. 96, pp. 309–324. doi:
10.3945/ajcn.111.031500.
17. HARASZI, R. et al. (2016). Using rheological phenotype phases to predict rheological features of wheat hardness and milling potential of durum wheat. In: Cereal Chemistry, vol. 93(4), pp. 369-376. DOI 10.1094/
CCHEM-12-15-0255-R.
18. HIDER, R.C., KONG, X. (2013). Iron: Effect of Overload and Deficiency. In: Metal Ions in Life Sciences, vol. 13, pp. 229-294. DOI 10.1007/978-94-007-7500-8_8.
19. HIMANI, M.S., SETHI, S.K. (2017). Variation in mineral micronutrient content in durum (Triticum durum L.) wheat genotypes under rain fed conditions. In: International Journal of Chemical Studies, vol. 5(6), pp. 2153-2156. ISSN 2349-8528.
20. JORHEM, L. et al. (2008). Elements in rice on the Swedish market: Part 2. Chromium, copper, iron, mangane se, platinum, rubidium, selenium and zinc. In: Food Additives and Contaminants, vol. 25(7), pp. 841-850. DOI
10.1080/02652030701701058.
21. KUMAR, S., RAO, M., GUPTA, N.C. (2014). Breeding for High Iron and Zinc Content in Cultivated Wheat Research & Reviews. In: Journal of Crop Science and Technology, vol. 3(3), pp. 6-9 ISSN 2319-3395.
22. LAKSHMI, S.U. et al. (2018). Seed Antioxidants Interplay with Drought Stress Tolerance Indices in Chilli (Capsicum annuum L) Seedlings. In: BioMed Research International, vol. 2018. Article ID 1605096. 14 p. DOI
10.1155/2018/1605096.
23. LUTEROTTI, S., KLJAK, K. (2010). Spectrophotometric Estimation of Total Carotenoids in Cereal Grain Products. In: Acta Chimica Slovenica, vol. 57(4), pp. 781-787. ISSN 1318-0207.
24. MAGALLANES-LOPEZ, A.M. et al. (2017). Variability in iron, zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits. In: Food
Chemistry, vol. 15(237), pp. 499-505. DOI 10.1016/j.foodchem.2017.05.110.
25. MEDVEDEV, P.V., FEDOTOV, P.V., BOCHKARYOVA, I.A. (2015). Comprehensive assessment of consumer properties of grain and its products. In: Mezhdunarodnyy Nauchno-Issledovatelskiy Zhurnal, vol. 7-1 (38), pp.
77-80. Available: https://research-journal.org/wp-content/uploads/2011/10/7-1-38.pdf (in Russian).
26. NADAF, S. (2010). Studies on biochemical quality parameters of wheat as influenced by location. Thesis for the degree of Master of Science (agriculture) in plant biochemistry. Department of Biochemistry, College of
Agriculture, Dharwad University of Agricultural Sciences. Dharwad, India, 2010. Available: http://krishikosh. egranth.ac.in/displaybitstream?handle=1/84871.
27. NADOLSKA-ORCZYK, A., RAJCHE, I.K., ORCZYK, W., GASPARIS, S. (2017). Major genes determining yield-related traits in wheat and barley. In: Theoretical and Applied Genetics, vol. 130(6), pp. 1081-1098.
DOI 10.1007/s00122-017-2880-x.
28. PELEG, Z., et al. (2008). Grain zinc, iron and protein concentrations and zinc-efficiency in wild emmer wheat under contrasting irrigation regimes. In: Plant and Soil, vol. 306(1-2), pp. 57-67. DOI 10.1007/s11104-007-9417-z.
29. PUGAEV, S.V. (2013). Contents of heavy metals in grain of winter and spring wheat grown in different environmental conditions. In: Vestnik Mordovskogo Universiteta, vol. 3-4, pp. 89-93. (in Russian).
30. RELINA, L.I. et al. (2018). Grain quality of tetraploid wheat Triticum timopheevii (Zhuk.) Zhuk. In: Selektsiya i Nasinnytstvo, vol. 114, pp. 106-119. DOI 10.30835/2413-7510.2018.152144
31. S.AEZ-PLAZA, P., et al. (2013a). An overview of the Kjeldahl method of nitrogen determination. Part I. Early history, chemistry of the procedure, and titrimetric finish. In: Critical Reviews in Analytical Chemistry, vol.
43(4), pp. 178-223. DOI 10.1080/10408347.2012.751786.
32. S.AEZ-PLAZA, P., et al. (2013b). An overview of the Kjeldahl method of nitrogen determination. Part II. Sample preparation, working scale, instrumental finish, and quality control. In: Critical Reviews in Analytical
Chemistry, vol. 43(4), pp. 224-272. DOI 10.1080/10408347.2012.751787.
33. SHAH, D. et al. (2016). Fortification of staple foods with zinc for improving zinc status and other health outcomes in the general population. In: Cochrane database of systematic reviews, vol. 9, art. No CD010697. ISSN 1361-6137.
34. SHAMLOO, M. et al. (2017). Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments. In: Scientific Reports, vol. 7,
p. 9133. DOI 10.1038/s41598-017-09681-5.
35. SHEWRY, P.R. et al. (2013). Natural variation in grain composition of wheat and related cereals. In: Journal of Agricultural and Food Chemistry, vol. 61(35), pp. 8295-8303. DOI: 10.1021/jf3054092.
36. STEIN, A.J. (2010). Global impacts of human mineral malnutrition. In: Plant and Soil, vol. 335(1-2), pp. 133-154. DOI 10.1007/s11104-009-0228-2.
37. SUCHOWILSKA, E., WIWART, M., KANDLER, W., KRSKA, R. (2012). A comparison of macro- and microelement concentrations in the whole grain of four Triticum species. In: Plant soil environment, vol. 58 (3),
pp. 141-147. DOI 10.17221/688/2011-PSE.
38. SYTAR, O. et al. (2018). Bioactive phytochemicals and antioxidant properties of the grains and sprouts of colored wheat genotypes. In: Molecules, vol. 23(9), 14 p. DOI 10.3390/molecules23092282.
39. SZABO, B.P., VEHA, A., GYIMES, E. (2007). Measuring the wheat kernel hardness. In: Review of faculty of engineering : analecta technica Szegedinensia, vol. 1, pp. 97-100. Available: http://acta.bibl.u-szeged.
hu/11766/1/engineering_2007_097-100.pdf.
40. UARROTA, V.G. et al. (2018). Revisiting Carotenoids and Their Role in Plant Stress Responses: From Biosynthesis to Plant Signaling Mechanisms During Stress Chapter. In book: Antioxidants and Antioxidant Enzymes in Higher Plants. pp. 207-232. DOI 10.1007/978-3-319-75088-0_10.
41. UAUY, C., BREVIS, J.C., DUBCOVSKY, J. (2006a). The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. In: Journal of Experimental Botany, vol. 57,
pp. 2785-2794. DOI 10.1093/jxb/erl047.
42. UAUY, C., et al. (2006b). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. In: Science, vol. 314, pp. 1298-1301. DOI 10.1126/science.1133649
43. UDACHIN, R.A. (1973). Wheats of Kyrgyzstan. In: Trudy po Prikladnoy Botanike, Genetike i Selektsii, vol. 50(1), p. 320. ISSN 2227-8834. (in Russian).
44. VECHERSKA, L.A. et al. (2018). The total antioxidant activity in grain of emmer cultivars and lines bred at the Plant Production Institute nd. a. V.Ya. Yuriev. In: Topical Issues of Agrarian Science: Proceedings of the 6th
intern. sci.-practical conf. Kyiv: Osnova, pp. 51-52. (in Ukrainian).
45. VEHA, A., SZABУ, P.B., GYIMES, E. (2011). Different method to determine the kernel hardness of Hungarian winter wheat varieties. In: 7th International Conference Integrated Systems for Agri-Food Production, Sipa.
Nyíregyháza, Hungary, vol. 10-12. Available: http://www.agir.ro/buletine/1300.pdf.
46. WHITE, P.J., BROADLEY, M.R. (2009). Bio fortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. In: New Phytologist, vol. 182(1),
pp. 49-84. DOI 10.1111/j.1469-8137.2008.02738.x.
47. YAROSH, A.V. et al. (2014). Method for evaluating grain hardness in winter bread wheat. In: Henetychni Resursy Roslyn, vol. 15, pp. 120- 131. ISSN 2309-7345. (in Ukrainian).
48. ZHANG, Y.J. et al. (2015). Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. In: Molecules, vol. 20(12), pp. 21138-21156. DOI 10.3390/molecules201219753.
49. ŻMIJEWSKI, M., SOKÓŁ-ŁĘTOWSKA, A., PEJCZ, E., ORZEŁ, D. (2015). Antioxidant activity of rye bread enriched with milled buckwheat groats fractions. In: Roczniki Panstwowego Zakladu Higieny, vol. 66(2), pp. 115-121. ISSN 0035-7715
Published
2019-10-15
How to Cite
RELINA, Liana et al. Grain quality of tetraploid wheat Triticum durum desf. var. falcatomelanopus jakubz. & filat. Stiinta agricola, [S.l.], n. 1, p. 3-9, oct. 2019. ISSN 2587-3202. Available at: <https://sa.uasm.md/index.php?journal=sa&page=article&op=view&path%5B%5D=10.5281%2Fzenodo.3524135>. Date accessed: 17 nov. 2019.
Section
Table of contents